

MRI Safety Issues

Anne Marie Sawyer, BS, RT(R)(MR), FSMRT amsawyer@stanford.edu

The Richard M. Lucas Center for Imaging
Stanford University School of Medicine
Department of Radiology
Stanford, California, USA

MRI Safety Issues

- Lack of Required, Annual & On-going Education & Training
 - Policies & procedures
 - Pre-procedure screening
 - Patient preparation
 - Positioning, immobilization & insulation
 - Patient communication

MRI Safety Issues

- Lack of Focus on Patient Burns due to:
 - Radio Frequency Magnetic Fields
 - ✓ Varying Gradient Magnetic Fields

How do we differentiate?

How do we protect & prevent?

Static Main Magnetic Field Effects (B₀)

RF Magnetic Fields (B₁)

Education,
Training,
Knowledge
& Support

RF Magnetic Fields (B₁)

Risks: Heating of metal or device, associated components, and/or surrounding tissues due to:

- **†** Exposure (close proximity) to transmit RF coil
- ★ Focus in area (antenna effect)
- **†** Currents induced in conductive devices
 - Cable forms loop with itself
 - ✓ Cable forms loop with other cable
 - ✓ Cable forms loop with human body
 - Human body forms a loop with itself
 - ✓ Overlapping stents or other devices
- Cable or human touches magnet bore wall
- **Malfunction or inappropriate use of a RF coil**

Varying Gradient Magnetic Fields

Risks: Currents induced in conductive devices resulting in heating of metal or device, associated components, and/or surrounding tissues.

- Risks due to rapid switching
 - Size (maximum amplitude) 20-50 mT/m or 2-5 gauss/cm
 - Speed (slew rate) 120-200 mT/m/msec
- Larger at ends of the gradient coil (zero at center)

RF Magnetic Fields (B₁)

Receive-only Head coil

Transmit-Receive Head coil

At certain lead lengths, less heating at 3.0T (128 MHz) vs. 1.5T (64 MHz) due to differences in resonant wavelength.

Required use of sponge pads to separate & insulate

1/4 inch (0.635 cm) of air GUARANTEED

Potential for

★ Induced electrical currents in loops & conductors

Excessive heating

Malfunction of the body coil with arm resting against bore wall

Potential Value of Ferromagnetic Detectors in MRI Screening

Issues

- Over-dependence by users
- Detects external metal, NOT internal
- ★ Generates false-positives & false-negatives
- **†** Function dependent on many variables
 - Motion rate of detector relative to metal
 - Size & mass of metallic object
 - Sensitivity setting of detector

Potential Value of Ferromagnetic Detectors in MRI Screening

Potential Value of Ferromagnetic Detectors in MRI Screening

Accident Prevention in MRI

Change out of street clothes

Accident Prevention in MRI

Change out of street clothes

Focus your concentration on screening for biomedical devices and implants!

"What does that alarm mean?"

Thank you for your attention!

Acknowledgements

Gary H. Glover, Ph.D.

Robert J. Herfkens, M.D.

Frank G. Shellock, Ph.D.

Emanuel Kanal, M.D.

Daniel J. Schaefer, Ph.D.

Joel Felmlee, Ph.D.

H. Cecil Charles, Ph.D.

Greg Brown, R.T., FSMRT

Bill Faulkner, B.S., R.T.(R)(MR)(CT), FSMRT

Candi Roth, R.T.(R)(MR)(CT)(M)(CV), FSMRT